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SUMMARY

An approximate method is devised to determine temperature distri-
butions during the transient aerodynamic heating of thin-skinned, heat-
conducting bodies. This permits evaluation of the streamwise conduc-
tion errors arising in the measurement of heat-transfer coefficients
based on the skin-temperature history.

The present method is valid for a large range of body shapes and
thickness distributions, within the limitations of one-dimensional
(streamwise) heat conduction, gquasi-isothermal surface, constant adia-
batic wall temperature, and negligible radiative heat transfer.

Numerical computations were carried out for flat plates, wedges,
and conical, hemispherical, and hemicylindrical shells. The results
are presented in the form of nondimensionel charts that permit a
rapid evaluation of a 10-percent error threshold in translent heat-
transfer measurements.

INTRODUCTION

The transient heating of thin-skinned bodies subjected to an aero-
dynamic heat input has a wide practical interest in high-speed flight
and model testing. This is, in genersl, a problem of three-dimensional
time-dependent heat conduction where the heat input depends on the sur-
face temperature distribution. This problem appears to be too compli-
cated for generalized treatment and therefore several restrictive
assumptions are necessary in order to meke 1t amengble to computation.

One such assumption 1s the restriction to two-dimensional heat
flow, which is realized under two-dimensional or axisymmetrical condi-
tions. A second assumption 1s that the body be in a guasi-isothermal
state. This allows the use of a constant-temperature heat-transfer



coefficient which is a function of longitudinal coordinate alone. The
previous assumptions reduce the problem to that of two-dimensional
transient heat conduction in the presence of a heat input represented
by a time-independent heat-transfer coefficieat, or constant heat-
transfer coefficient and varying forcing function (adiabatic wall
temperature ).

The present investigation is concerned with the longitudinal con-
duction in the case where normal heating (across the skin) is assumed
to be of a calorimetric type under a step forcing function. The thermal
conductivity of the skin is assumed infinite in a direction perpendicular
to the surface and the internal surface is assumed insulated, therefore
the temperature is assumed constant across the skin. This is a good
approximation in the case of thin-skinned bodies having a well insulated
internal surface. Nevertheless, it must be kept in mind that normal
conduction effects cannot be neglected at the very early times after
time equal O, when the temperature-time slopes of the outer and inner
skin surfaces are substantially different. 1In any case, the problem of
normal conduction in the absence of longitudinal conduction has been
investigated in the past and solutions are available. (See, for instance,
refs. 1 and 2.) When normal conduction proves to be significant, a first
approximation to the complete picture may be obtained by writing the heat
balance in an element of skin including both heat flows as obtained from
the longitudinal and normal solutions.

Longitudinal conduction has the effect ¢f relieving thermal con-
centration in the skin; it also distorts heat-transfer computations
based on measured skin temperature history. The present investigation
was initiated to obtain an approximate solution that would predict these
effects, especially from the viewpoint of the error introduced in heat-
transfer measurements. Under the assumptions previously mentioned, the
solution obtained is applicable to bodies of arbitrary shape and thick-
ness distribution, except for regions in the neighborhood of discon-
tinuities in heat input, cross-sectional arec, thickness distribution,
or their derivatives. Numerical results are presented for simple shapes
with heat inputs appropriate to laminar and turbulent boundary layers.

SYMBOLS
a area of surface perpendicular to lcngitudinal (streamwise)
direction
Aij i=1,2,3, . . .;J =125, . . . functions given by

equations (15)
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F1,Fp

Nu

P(X)

Pr

Q(x)

N

specific heat of skin material
local skin-friction coefficient
input paremeters (table I)

input parameters (table I)

T -Tg0
dimensionless temperature variable, —————mro

Taw = Tt=0
i=1,2,5, . . . temperature components defined by

equations (9), (10), and (11)
heat-transfer coefficient
indicated heat-transfer coefficient, defined by equation (17)
i=1,2,3,45,6 constants representing heat-transfer level,
h,/X or th/5
thermal conductivity
arbitrary constants
skin thickness
characteristic length
mass of skin element
Mach number
arbitrary constant
Nusselt number based on coordinate x
pressure
characteristic function defined by equation (6)
Prandtl number

total heat flow per unit time

characteristic function defined by equation (7)



outer radius of hemispherical or hericylindrical shell
inner radius of hemispherical or henicylindrical shell
Reynolds number based on coordinate x

lateral area subjected to aerodynamic heating

input parameter (table I)

Stanton number

time

-~

skin temperature

reference temperature

velocity at edge of boundary layer
volume of skin element

speed of sound

input parameters (table I)
longitudinal coordinate
dimensionless longitudinal coordina‘.e (table I)
thermal diffusivity of skin material.
arbiltrary constant

ratio of specific heats for air

nondimensional solution for the hea:.ing of the yawed cylinder,
from reference 3

yaw angle

viscosity of air

kinematic viscosity of air .
density of skin material

Fourier number, f% t
L
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I

wedge angle
cone semiapex angle
temperature exponent in air viscosity law

refers to 10-percent-error point

Subscripts:

aw adigbatic wall

b pertaining to body

l variable is referred to the skin thickness 1

max maximum value

R variable is referred to the radius R

SL stagnation line conditions

SN conditions at the stagnation line derived from the normal
flow component

SP stagnation-point conditions

w wall conditions

0 free-stream stagnation conditions

a variable is referred to the diffusion distance per unit time
Ja

o0 free-stream conditions

Superscripts:

* 1

* applies to X3, X; = r—

! first derivative with respect to X

" second derivative with respect to X

m third derivative with respect to X

IV fourth derivative with respect to X



THEORY

Heat-Conduction Equatisn

Consider one-dimensional heat conduction in a body of arbitrary
shape, the outside surface of which is subjec:ted to aerodynamic heating
in the absence of radiation. Let an infinitesimal volume element be
determined by two surfaces perpendicular to tne longitudinal (x) direc-
tion, of area &a and a + da and at a distance dx apart as repre-
sented in sketch (a):

Sketeh (a)

Let ds denote the element of lateral area subjected to aerodynamic
heating. Since conduction is one-~dimensional the temperature on the

surfaces & and a + da is constant and equal to T and T + %1 dx,

X
respectively. The mean temperature of the element is Tp =T + %% 95.
2

The heat balance in the element is

Heat stored = Aerodynamic heat in + Heat gained by conduction

The heat stored per unit time is

e ACHACIE o



and if second-order differentials are neglected

oT aT
dqszcdmgt—=pch-aTt (1)

The aerodynamic heat entering the element is

ddgepo = h ds(Taw - Tm)

Again if second-order differentials are neglected

ddgepo = B ds(Tgy - T) (2)

The heat gained by conduction through the surfaces a and a + da is

ST oT
dgge = (qin)a - (qout>a+da B —ka(——)x + k(o da)(gg)x+dx

X

and if second-order differentials are neglected

2
dqgc=kaﬂdx+kdag£ (3)

= X

Therefore, the heat balance can be written as

2
o __h (TaW-T)+a5_-T-+a
St av %=

pc &2
ds

(%)

® |
Al
Yy

since a dx = dv.

For the case of a timewise step heat input, constant adiabatic
wall temperature, and initially isothermal body, the following dimen-
sionless variables are defined:

T-To
Taw = Ty=0

G =
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where I 1is an appropriate reference lengtk. Substitution into equa-
tion (L) leads to

2
- _g) + 38 i
- PO - 0) + S (05 (5)

&

or
where

P(X) = L __Eiz)_.. (6)

and

Q(x) = (7)

a(X) ax

The functions P(X) and Q(X) describe the conditions (heat input and
geometry) that characterize a particular problem and therefore they may
be called the characteristic functions of the problem. It may be noticed
that P and Q are assumed to be function:; of X alone. For a given
geometry this is always the case for Q bus, in general, this is not
true of P, which includes the aercdynamic heat-transfer coefficient h.
In e strict sense, h depends upon the wall.-temperature level and its
distribution shape, and therefore it is, in general, a function of time
as the body exchanges heat with the surrounlings. However, there are
many cases where the time dependency of h can be neglected. The fol-
lowing restriction is therefore imposed: tie present solution is appli-
cable to those cases where the aerodynamlc 1eat-transfer coefficient can
be considered to be a function of the longiiudinal coordinate alone,

and this will be referred to as a cuasi-isoshermal state of the body.

The restrictions on equation (5) may tien be summarized as:
1. One-dimensional longitudinal (streamwise) heat conduction

2. Negligible radiation compared with aerodynamic heat input
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5. Value of T, constant with time after t = 0, independent of X
4, Quasi-isothermal state of the body as defined previocusly

A further limitation concerns the behavior of the characteristic func-
tions P(X) and Q(X). These functions may have singularities at the
leading edge of sharp bodies, or where discontinuities of cross-sectional
area or thickness distribution occur. The present aprproximate solution
yields finite results only where P(X), Q(X), and their derivatives are
continuous functions of X. (See egs. (15).) Where discontinuities
such as multivalued derivatives of P(X) or Q(X) are present, inter-
ference between the regions on both sides of the discontinuity will
occur, and eventually will spread out to the neighboring regions.
Accordingly, care should be exercised in applying the present results

to bodies having such discontinuities.

Approximate Solution of the Heat Conduction Equation

An approximate solution of equation (5) has been obtained in the
form of a series G =Gp + Gp + Gs + . . . of which the first three

terms have been computed. This series was determined by writing equa-
tion (5) as

aGl aGg aG5
aT+aT+a-|—+...:P(X)l_(Gl+G2+G5+...ﬂ
82 ( )
+ =~—=(G1 + Gp + Gz + . . .
+ Q(X)gax_(c-l + G2 + G5 + . . .) (8)

and letting the temperasture components Gy, Gp, and GB’ respectively,
be defined by the differential equations

0
Sgl = P(X)(1 - G7) (9)

X 3G el
5:2 = -P(X)Gp + 21 +Q(x)—=

a - (10)
X
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R >°G &G
3 2 2
renlhy -P(X)Gz + - + Q(X)gi- (11)

Succeeding terms may be obtained similarly.

Such a separation of equation (5) is partly granted by the linearity
of the equation, and the results are validated a posteriori by comparison
with numerical integrations of equation (5) tc be discussed later.

The physical interpretation of the temperature components Gi, Gz,
GB’ and so forth, is the following: Gj 1is tke calorimetric temperature,

that is, the temperature that would exist in the absence of conduction;
G, 1is the temperature introduced by conducticn arising from the Gl(X)

distribution, and it includes the "interference" term —P(X)Gg, that is,
the perturbation in aerodynamic input due to the presence of Gp; Gz 1is
due to the conduction arising from G, plus its own "interference"; and

successive terms can be similarly interpreted.

In this way, an infinite series is obtaired as a solution to equa-
tion (5). If a finite number of components is used the last one should
include its own conduction for equation (5) tc be satisfied exactly.

oG oG
For instance, if three components are used, the terms Eréi + Q(X)-éi2
X

should be added to the right-hand side of equetion (11). Since this
would complicate the equation to the same degree as the original equa-
tion (eq. (5)), the conduction terms of Gz ere neglected in equa-
tion (11) and they therefore represent the error introduced in the
solution.

The temperature G = Gj + Gp + Gz shoulc not be expected to satisfy

exactly the boundary conditions since it is not a complete solution. It
was found that, as the leading edge of sharp l.odies is approached, the
first terms of the series become divergent anc therefore no solution is
presented at or near the leading edge of sharp bodies.

The procedure for solving equations (9), (10), and (11) is the
following: the solution of equation (9) is

Gp =1-c¢e

This temperature may be used to compute Gp :'rom equation (lO), which
in turn allows the solution of equation (ll) J'or G3, and so on.

R ECEICE -
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When such a procedure is followed, the results for the first three
terms are

Gy =1-¢eF7T (12)
Gp = (AllT2 - A1273)e‘PT (13)
G3 = <A2173 - Aot + Az - A2476)e_PT (14)

where

Ay = Z(B" + Q") \
Ajp = 3(P1)?
A2]_ = %(PIV + 2P"Q' + PIQ" + EP'"Q + PIQQI + PHQ2)

b (15)

Aoz = 515[7(1’")2 + 10P'P'™ + 16P'P"Q + 6(P')2Q" + 3(p')2Q21

Aps = 5%[15(?’)213" « 5(21)%)

L

1
Ay = =(P'

In the preceding equations the functional dependency of P and Q
(defined in egs. (6) and (7)) is omitted for brevity.

According to equation (5) the heat-transfer coefficient with con-
duction 1s

X %G . . X%

— __§+Q'_
no= 8 e AV OT (16)
I ds\l - G 1-¢
The quantity
oG oT
or av ot
hy = £% pc v = PC —— — (17)
L is 1 - G ds Tg, - T
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is readily obtained from temperature-time measurements and may be termed
the indicated heat-transfer coefficient, whizh would be obtained from a
calorimetric (no conduction) analysis. Then from equation (16), the
ratio of hi/h may be expressed as

2
¥, g
B_g L 13X
h P 1-G

According to the present solution this quantity is

%l:%ll’l’ - 5(Al2 - Agl)Tg - J-I-A22T3 + 5A25TA - 6A2)+T5] e—PT

h 1 - (Gy + Gp + G3)
(18)

Equation (18) may be used as a correction for measured values of
the heat-transfer coefficient, that is

1
heorrected = B (measured (““) (19)

Numerical Integraticn

The approximate solution previously described was checked by com-
parison with direct integration of eguation (5) in several particular
cases. Numerical integrations of equation (5) were carried out for a
flat plate and solid wedge, under specified heat inputs. Equation (5)
may be written in terms of finite differences as

Cx,r+ar = Gx,r * P(l - GX,T)‘ST + (GXﬁAX,T - 2GX,T + GX_AX’T)(Aiig
+ Q(G'x+AX,T - GX,T)ix'l (20)

This equation, with the boundary conditions

Gx,0 =90

-
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B 1
Go,r = Gax,r

was integrated by steps with the aid of an IBM card-programed digital
computer.

This type of solution introduces an error due to the finite step
size; therefore small step sizes are desirable. Furthermore, in order
AT
5 (ax)P
function of P. Hence, as AX is decreased Ar must be decreased tco.
This taxes the storage capabilities of the computer and, therefore,
solutions of this type may be expected to be restricted to short times.
Comparison between these numerical solutions for short times and the
approximate solutions of the present paper are discussed later in the
section entitled "Presentation of Results."

to obtain a solution, it was found that must be less than some

APPLICATION OF THE SOLUTION

The application of the present solution to a particular case con-
sists essentially in determining the functions Aij(X) given by equa-

tion (15) as functions of P and Q, with which equations (12), (13),
h.
(14), and (18) may be computed, yielding G(X,t) and 7%(X,T).

A detailed discussion of the functions Aij(X) is included in

appendix A for the flat plate, the wedge, and the conical shell with
laminar and turbulent boundary layers and for the hemispherical and the
hemicylindrical shells with laminar boundary layers. For each of these
cases computations were carried out by combining the heat-transfer level
and certain body properties in a free parameter called the input param-
eter (see definitions in table I). The characteristic length L was

lpor podies having finite leading edges this boundary condition
follow% directly from the condition of no heat conduction at the leading

edge ‘QQ = 0|. For sharp bodies this is not necessarily so, but

axX o,T
apparently the pfesent boundary condition still holds, as pointed out in
reference k4.

°For instance, for the case of a flat plate of constant thickness
a necessary condition for the step size is

ar . Pax)[1 - p(ax)ar] - B(2 )1 - p(2 sx)ar]

(x)?  [B(3 &) - 2p(2 aX) + P(&X)] - [P(2 &%) - P(ax)]
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particularized for each configuration in appendix A and is also shown in

h.
table I. In this way, a set of curves G(X,7); j%(X,T) was obtained

for each of the body shapes mentioned, for a :range of values of the cor-
responding input parameter. Thus, for any pa-ticular set of free-stream
conditions and body properties, once the inpu: parameter is calculated,
the present solution provides the temperature and heat-transfer correc-
tion as functions of time and the coordinate of the peint.

A collection of methods for the estimation of the input parameter
from free-stream conditions is included in apirendix B for ready reference.

PRESENTATION OF RESULT:

Results of the numerical computations, as compared with the approxi-
mate solutions, are presented in figures 1, 2, and 5> for particular
bodies and heat inputs. It may be seen that .2 good agreement is obtained
for the temperature varlable G and reasonable agreement is shown in

hy/h.

Results of the approximate solution, des:ribed in the previous
section, are too bulky for a complete presentition. Therefore, only
one plot for a typical value of the input parimeter is presented for
each body shape in figures 4 to 11. In the particular case of the
stagnation point of blunt bodies complete resilts including the effects
of the input parameters are presented in figures 12 and 15. For other
than this particular case the effects of the input parameters are
illustrated by means of partial results preseited in figures 14 to 18
in the form of charts that provide a rapid meins of calculating a
10-percent error threshold in heat-transfer m:asurements. These charts
give the location and temperature of the poin: where the error in
indicated heat-transfer coefficient is 10 percent. This fictitious
point has a coordinate Ex]lo that varies wizh time. At any given

instant, points at X > [X]lo or X< [X]lo will have errors in indi-

cated heat-transfer coefficient larger or smaller than 10 percent, as
the case may be.

LIMITING SOLUTIONS

Limiting solutions for hi/h for small ralues of Pt may be
obtained by using the temperature

Gy =1- e F7
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in equation (16) and letting Pt << 1. For the flat plate, wedge, and
conical shell the heat-transfer coefficient is assumed to be propor-

tional to x'l/2 and x—l o for laminar and turbulent boundary layers,
respectively. When the condition Pr << 1 1is imposed, equations are
obtained for hj/h that are independent of the heat input. The coordi-

nate [X]lo of the point having a 10-percent conduction error may be
obtained by setting hi/h = 1.1, and it proves to be proportional to

the square root of the Fourier number T for all cases, as shown by
equations for the

flat plate with leminar boundary layer:

o1 dex, (21a)

[xz] 10 = 2. 7ur, M2 (21b)
flat plate with turbulent boundary layer:

Mgy %sz'g (22a)

[xz] 0= 1.557,1/2 (22v)
wedge with laminar boundary layer:

%% =1+ %waxa'g (23a)

[xa] o = u.7lwal/ 2 (23b)
wedge with turbulent boundary layer:

Boog e Zex, (2ka)

[%a]10 = 3797 (24b)
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conical shell with laminar boundary layer:

=1+ irx,

hy -2
h T

[Xl}lo - 1.58711/2

conical shell with turbulent boundary layer:

h -2
__.:E =1 + ..l-"r Y,XZ
h 25

[Xl]lo - o.65711/2

(25a)

(25b)

(262)

(26b)

For the hemispherical and hemicylindrical shells in laminar flow

(heat-transfer coefficient assumed proportional. to
responding equations are

for the hemispherical shell:

hy _ 1 0
Tl— =1 - 2TR<1 + EPTR tan XR)

0.1 - 2TR

2 _
tan [XR] 10 © 5

Prr
and for the hemicylindrical shell:
hi 2
-171— =1 - TR<1 + PTR tan X..{>

0.1 - TR
2

]

2
e [XR} 10 p
R

Xg), the cor-

(28a)

(28v)

At the stagnation point equations (27a) and (23a) yield, respectively,

h
h

i=-1- 2T (10-percent error at Tg = 0.05)

~ =
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and

hy
T = 1-17g (10-percent error at TR = 0.10)

As would be expected, the conduction error is larger in the hemispherical
shell due to the three-dimensional effect. As indicated by equations (27)
and (28) the limiting solutions for the hemispherical and hemicylindrical
shell are not independent of the heat input everywhere, since tanX

appears as a factor of Pr. The limiting solutions are included in the
charts of figures 14 to 18 and it may be seen that they indicate the
correct trend.

DISCUSSION OF RESULTS

General Results

Figures 4 to 11 show plots of G(X,r) (G = G + Gp + Gz) and
%}(X,T) for typical values of the corresponding input parameter. (See
definitions in table I.) Solid lines correspond to regions where
| > |e2| > |63

Flat plate, wedge, and conical shell.- For these bodies the results
are qualitatively similar. The temperature variable G, which is maximum
at the leading edge or tip, decreases asymptotically to zero at infinity.
During the transient heating the ratio hi/h has to be zero at the

leading edge since h 1is assumed to be proportional to x'l/2 or x"l/5

and hy remains finite. (See, for instance, refs. 5 and 4.) This ratio
is equal to one at infinity, where conduction effects are not felt at
finite times. Points removed from the leading-edge region but at finite

distances have positive errors %} > l); that is, these points show a
net gain of heat dvue to conduction. Consequently, at any time (except

t = 0) during the transient heating the curves %%(X) must go through

a maximum. At early times these maximums are very near the leading

edge, in the region where the first three temperature components of the
present solution do not converge. At later times the maximums shift
progressively downstream (into the region of convergence of the first
three components) and become increesingly smaller, as illustrated
schematically in the following sketch, based on figures 4(b), 5(b), 6(b),
7(v), end 8(v):
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[X]lO,tl [X]:.O,tB [x];l_O,t;27 X

Sketch (b)

Hemispherical and hemicylindrical shells.- For these bodies the
heat input has been assumed to be of the form h = (Constant)(cos Xg).

This distribution closely represents the actial heat input near the
stagnation region, and approximates it for velues of XR up to about

60°. The cosinusoidal distribution becomes insuitable downstream of
boundary-layer transition regions or close tc X = g, but the assump-

tion that T, is independent of Xg in an) case restricts the use of

the present solution to regions nearer the stagnation point. The solu-
tion is presented for values of Xg wup to 6(° to show trends. Within
these limitations the solutions show an X-wise monotonic decrease of

both G and hi/h. Values of hi/h are alvays less than unity, which

means a net loss of heat due to conduction ard increasing negative errors
in a downstream direction.

For stagnation regions plots of hi/h ¢s a function of G are
presented in figures 12 and 13. For the hemispherical shell (fig. 12)
a fourth temperature component Gj has been included, as described in
appendix A.
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A plot of the calorimetric temperature Gp 1s also included (solia
lines, figs. 12 and 13). Points on the G1 curves correspond to points
on the G curves lying on the same line of TR = Constant. If only Gy
and TR are available, values of hi/h are obtained by reading the

ordinate of the corresponding point in the G curve (broken line).
Figures 12 and 13 allow evaluation of the relieving effects of conduc-
tion in the heating of stagnation regions by direct comparison of G

and Gj. It may be noticed that the input parameters S and Cy play

a dominant role. For approximate values of S5 < 10 or Cy < 5, large
conduction (compared to the aerodynamic input) is present even for small
temperature rises, whereas for approximate values of S > 50 or Cy > 20,
conduction is small even for large temperature rises.

Ten-Percent Error Charts

In figures 14, 15, 16, 17, and 18 results are presented for the
point having a 10-percent conduction error, over a range of values of
the input parameters. This point has been chosen since it is believed
that the determination of a 10-percent conduction error threshold would
be useful in evaluating heat-transfer measurements and for purposes of
model design. Furthermore, it is believed that, while the first three
temperature components considered in the present numerical calculations
grant enough accuracy for the determination of errors of this order,
the computation of substantially larger errors should include more
temperature components.

Flat plate, wedge, and conical shell®.- (Figs. 14, 15, and 16.)
From the previous discussion of these bodies it follows that the loca-
tion of the point having a 1l0-percent conduction error moves downstream
with time while the corresponding temperature increases. Except for the
immediate neighborhood of the leading edge, all points upstream of this
location gain heat by conduction at a rate of more than 10 percent of
the aerodynamic heat input whereas all points downstream gain heat at
a rate of less than 10 percent of the aerodynamic heat input.

During the early part of the temperature rise (G < 0.1) the down-
stream motion of the 10-percent-error point is very nearly proportional

51t was found that for the conical shell having a turbulent boundary
layer the curves of G plotted against X are very steep near the tip
and rapidly level off downstream (see fig. 9(a)). This places the
10-percent-error point in a relatively forward location, where the first
three temperature components do not converge satisfactorily (see
fig. 9(b)). Therefore, the 10-percent-error chart (fig. 16(b)) was
obtained by extrapolation of l-percent, 2-percent, and 3-percent errors,
located well within the region of convergence.
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to Vf; independently of the input parameter, as predicted by the limiting

solutions. This downstream motion continues at a decreasing speed until

it stops and reverses, as illustrated in sketch (b) and figures 4(b)

and 5(b). Reversal points correspond to maxiiums in the solid lines of

figures lht 15, and 16. These maximums were observed to occur at a given
G

value of ]10 for each body and boundary-liayer combination considered.
Shortly after [X]lo,max is attained the curses terminate, the termina-

tion corresponding to the time when the maximim error becomes less than
10 percent.

Tt was found that under different conditions (such as heat input
and body properties) for a given temperature rise [G]lo, the location

of the 10-percent error point [X]lo is inversely proportional to some

power of the input parameter. This relationship may be obtained from

the limiting solutions for small temperature rises. For instance, for
a flat plate in laminar flow the temperature /ariable in the limiting

solution is

and since

the result is aepproximstely

-1/2

therefore, the time at which the lO-percent-error point will attain a
given position at a given temperature is

T = lE}liQ[xz]l/g

FL 10
Replacing T 1in the corresponding limiting solution (eq. (21b) yields

for a flat plate with laminar boundary layer:

{X z} 10 = (2 -74)4/ > [Gl] iéjl"L-g/5 (292)
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Similarly, equations for the other bodies considered are obtained

for a flat plate with turbulent boundary layer:

" 10 -

[x1] 10 = (155) /9[Gl]ié9FT 5/9 (290)
for a wedge with laminar boundary layer:

PRV A A
= (L.

[Xa]lo (k. 78) [GlJl()(tan cp) (29¢)

for a wedge with turbulent boundary layer:
-5/h
_ 5/2[, 15/ Wr
[Xa)io = G190 %[o] 35 (2 (294)

for a conical shell with laminar boundary layer:
L/3e q2/3, -2/3
[Xl]lo = (1.58) / [Gl]lé cL, (29¢)
for a conical shell with turbulent boundary layer:

[x1] 10 = (0.63 )10/9[Gl] ié9CT—5/9 (e91)

Equations (29) were checked for large values of G by using the results
of the present solution presented in figures 1k, 15, and 16. It was
found that although the proportionality constants are not the same, the

functional relation between [XJlO and the input parameters holds true
for large values of G.

The values of [X]lO,max previously discussed follow the same pat-

tern since they occur at given values of [G]lO‘ The corresponding equa-

tions were obtained from the present solution by means of plots similar
to that shown in figure 19, and they are

for a flat plate with laminar boundary layer:

[%1) 10 mae = 4-2FL (302)
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for a flat plate with turbulent boundary layer:

_ -5/3
[xl] 10 max = 321 (300)
for a wedge with laminar boundery layer:
L WL \7@ _
(e 10, max = Ol5ms (50¢)
for a wedge with turbulent boundary layer:
-5/k
[xa] 5[ ) g (304)
= O‘
Xq 10,max tan ¢/
for a conical shell with laminar boundary layer:
-2/3
[Xl]lo,max = 1.2Cy, (30e)
for & conical shell with turbulent boundary layer:
_ 6 -5/9
X310, max = ©-0%Cq (30£)

It must be noticed that large values of the input parameter (that
is, small vealues of [X]lo for a given temperature rise, and small

values of [X]lo,max) do not necessarily correspond to forward physical

locations of the lO-percent point [X]lo or the reversal point [X]lo,max’

since the input parameters include some power of the reference length in
the numerator. The effect of the different rarameters involved in deter-
mining the relative physical position of the 1O0-percent error point and
of the reversal point is better expressed by the following equations that
follow directly from equations (29) and (30): (sdbscripts 1 and 2
represent two arbitrary sets of conditions heving the same temperature

rise  [G]10)

flat plate and conical shell with laminar boindary layer:
([Xho)g ) ([X]lo,max)Q _Jke (k) {h(x) ﬁ]ﬂ 2/5 (31a)
([X]lo)l ([X]lo,max)l 1 (k)1 {h(X) ﬁ]g}

a
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flat plate and conical shell with turbulent boundary layer:

9
(Cd10)e  ([Ja0,max)e _ (g (ko)e [nxx] 115/ (510)
([XJlO)l ([leo,max)l ! (kb)l [h(x)xl/5]2 {
wedge with laminar boundary layer:
([Xho)e =([X]10,max tan @y (kp)o [h(x) \/;]1\; (31¢)
(Clioh  ((xao,mex tan 91 (k)3 [h(x)\/_’zjej

wedge with turbulent boundary lsyer:

(B10)e ) <[x:|10,max tan 9, kb [h(X)xl/5]l 5/4

(
<[ﬁ]lO>l ([leo,max tan @1 kb [h(x)xl/5]2 31d)

Notice the different effect of the parameters indicated by the different
exponents: 1if, for instance, the thermal conductivity of a flat plate

with laminar boundary layer is doubled, [Xﬂlo max IS increased by
2

about 60 percent whereas the same variation in a wedge results in a
L4LOO-percent increase in [?]lo,max'

Hemispherical and hemicylindrical shells.- (Figs. 17 and 18.) 1In
these cases the 10-percent~error point moves with time toward the stagna-
tion region. Points upstream of its location (0.9 < hi/h < 1.0) lose
heat by conduction at a rate of less than 10 percent of the aerodynamic
input, and points downstream (hi/h < 0.9) lose heat at an increasing
rate, always larger than 10 percent of the aserodynamic heat input.

It was found that for the 1lO-percent-error point, for a given tem-
perature rise [G]lo, an increase of the input parameters S or Cy
always results in an increase of [Xg]lo. This relationship may be
obtained directly from the results of figures 17 and 18, as shown in
figure 20 for three values of [G]jg. For small temperature rises the

same results may be obtained by making use of the limiting solutions.
For the case of a hemispherical shell, the temperature variable in the
limiting solution is



2k

-Pr
Gl=l—e zP’T':E
and
P = 5 cos XR
therefore
Gy
T I et ——
R " 5 cos xR

Replacing P and TR in the limiting solution (eq. (27a)) and letting
hi/h = 0.9 (for the lO-percent-error point) ¢ives

1 2
1+ -2-[(;1] 10 trn [XR]lO

cos[Xﬁ].o

5 =20 [Gl} 10

and for constant [Gl]lo it follows that

S~ Gl] o —s———11 + [Gl] " 1 tang[XR] 10
dIXRIlO cos [Xﬁ]lo cose[XR]lo 2

This is an essentially positive quantity, which means that an increase
in S at constant ESi]lo results in an increase in EXR]lO‘ The

same conclusions are applicable to the case of the hemicylindrical
shell.

It is also generally true that for any (jiven point Xy, for a given

temperature rise G, an increase of the inpu: parameter results in
smaller conduction errors, as illustrated fo:: the stagnation point in
figures 12 and 13.

From the previous considerations it is - hen concluded that, in
order to decrease conduction errors for a given temperature rise, large
values of the input parameters are desirable. Inspection of the defini-
tions of the input parameters (table I) then leads to the conclusion
that small skin thickness and thermal conduc-=ivity, and large body radius

Y e
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and stagnation heat-transfer coefficient (with body radius predominating)
are desirable in order to minimize conduction effects.

Typical Examples of Application of Solutions

Flaet plate with laminar boundary layer.- (Fig. 14(a).) The fol-
lowing conditions, which may be typical of a wind-tunnel test, are
assumed:

O T )

e 600
O 100
Do, 1b/8q in. 8888 + « ¢ 4 v i e e e e e e e e e e e e e 800
A ¥ Y T R O
G, S FE/SEC v v v v e e e e e e e e e e e e e e e e .. s BB X 1076
MateriB8l . + « o « o « « + o o o ¢ o« o o o o« + o« . » Stainless steel

The input parameter is calculated according to appendix B, and for this
case it is approximately ¥y = 0.03. From figure 14(a) the successive
locations and temperatures of the lO-percent-error point may be obtained
for this value of Fy. For instance, at t = 5 seconds (t7 = 22.2) the
10-percent-error point is located 15 thicknesses aft of the leading edge
([Xi]lo = 15) and its temperature corresponds to Gyg = 0.165, that is,

a 16.5-percent (of the potential) increase above the initial temperature.
Under the conditions assumed the maximum downstream position of the
10-percent-error point would be at 42 thicknesses aft of the leading
edge and would occur at t = 44.6 seconds (r; = 330). All stations

beyond that point will have conduction errors never in excess of 10 per-
cent of the aerodynamic heat input.

Hemispherical shell with laminar boundary layer.- A %- inch-radius

hemispherical shell is considered under the same free-stream conditions

as those for the flat plate in the preceding section. With

Bt
hgp = 0.0815 = Ky = 10 — 2t and 1 = 0.030 inch

(sq £t)(sec)(°R)’ (££)(nr)(°r)’
the input parameter is S = 21.6. The progress of the 10-percent-error
point may be approximately followed in figures 12 and 17 for S = 20,
When the stagnation point has experienced a temperature rise of
G =0.525 (at Tg = 0.0%, fig. 12) it has a conduction error of
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7.8 percent; the 10-percent-error point is at 46° (fig. 17) and has a
temperature rise of 41 percent. The forward notion of the 1lO-percent-
error point continues until it reaches the stugnation point at

TR = 0.0506 (t = 1.9 seconds) with G =~ 0.6. After this time the con-
duction error is larger than 10 percent of the aerodynamic input through-
out the body.

CONCLUDING REMARKS

An spproximate method has been devised to compute transient tem-
perature distributions and streamwise conduct:ion errors in heat-transfer
measurements. This method can be applied to @ large range of body shapes
and thickness distributions, within the limitations of one-dimensional
heat conduction, time-independent heat-transfer coefficient, constant
adiebatic wall temperature, and negligible radiation effects.

The method consists in evaluating the tenperature as the summation
of temperature components, of which the first three (and in one case,
four) components have been calculated. The method is suitable for com-
putation by means of an ordinary desk computing machine,

Numerical computations were carried out “or semi-infinite flat
plates, wedges, and conical shells, and for hemispherical and hemicylin-
drical shells. Free-stream conditions and boly properties were included
in a free parameter, called input parameter. Complete results are pre-
sented for specific values of the input paramcter, and charts showing
the location and temperature of the point hav ng a 1O-percent conduction
error in measured heat-transfer coefficient a-e presented for a range
of values of the input parameter. This presentation permits a rapid
determination of a 10-percent-error threshold in heat-transfer
measurements.

In the cases of the semi-infinite flat plate, the wedge, and the
conical shell all points except those in the mmediate neighborhood of
the leading edge or tip show a net gain of heat due to conduction. The
fictitious 1lO-percent-error point moves downs:ream with time with
decreasing speed until it stops and reverses its motion, thereby achieving
a maximum downstream position. Since all poiits downstream of the
10-percent-error point have conduction errors smaller than 10 percent,
it follows that points downstream of the maxiimum never sustain errors
larger than 10 percent. The coordinate of this maximum position increases
with increasing thermal conductivity of the sitin and skin thickness or
wedge angle, and decreasing heat-transfer lev:l,

In the cases of hemispherical and hemicylindrical shells there is
a net loss of heat due to conduction, which increases in a downstream

~Nn e
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direction. The 10-percent-error point moves upstream with increasing
time until it reaches the stagnation point, after which it loses signif-
icance since the errors are larger than 10 percent throughout the body.
This occurs at values of the Fourier number, based on the radius, of
approximately 0.05 and 0.10 for the hemisphere and hemicylinder, respec-
tively. For a gilven temperature rise, minimum conduction is achieved
with small skin thickness and thermal conductivity and large body radius
and stagnation heat transfer, body radius being the dominant factor.
Conversely, 1if large thermal relieving effects are sought near the
stagnation region, a thick, highly conductive skin with small nose
radius is desirable.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., March 27, 1961.
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APPENDIX A
APPLICATION OF THE SOLUTION TO 3IMPLE BODIES

This appendix is concerned with the application of the present solu-
iion to the following bodies, exposed to aeroiynamic heat transfer through
laminar and turbulent boundary layers:

1. Flat plate

2. Solid wedge

3. Conical shell

4, Hemispherical shell

5. Hemicylindrical shell

All bodies except the solid wedge were assumei to have constant skin
thickness.

The heat-transfer coefficient was assumel to be of the form

h = (Constant)(X'l/e) and h = :Constant)(x’l/B)
for the first three bodies, and
h = (Constant)(cos X)

for the last two. A compilation of commonly used methods for estimating
the constants is included in appendix B.

When the heat-transfer coefficient is proportional to X'n, equa-
tions (15) reduce to a simpler form. Two exanples of particular interest
are:

For

P(X) = Kyx7
Q(x) =0

equations (15) become

~N NN
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equations (15) become

where

Ky»

Ay =

Ao
Ay
Apo
Az3
Aoy,

K>, and

= % K2n2(n + 2)2X

% Kln(n + 1)X
l K 2 2x"(2n+2)
510

% Kn(n + 1)(n + 2)(n + 3)x" (04

& K12n%(n + 1)(17n + 27)x'(2n+u)

%% K15n3(n + 1)x(3nth)

1 2n2x-(2n+2)

=3-K2

-(n+k)

L w2 2(r 72 -(2n+k)
& K,%n (1702 + 26n + 8)X

% K, 3n3(13n + 8)x~OPH)

%g Kehnhx-(hn+h)

n are arbitrary constants.

-(n+2) N
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(A1)

(A2)
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Flat Plate

This is the case of a seml-infinite flat »Hlate of constant thick-
ness 1 exposed to a two-dimensional fluid flow on one side. In this
case

av

=1 and a(X) = Constant
ds

Let the characteristic length L be equal to 1; then the nondimensional
variables are

>

a
X, =%  and -y
LT 1T 2

and the characteristic functions P(X) and Q(X) become

P(X1> = l—h-@—ll and Q(Xl> =0

ky,

Leminar boundary layer.- The heat-transfer coefficient is of the
form

-1/2
h(X;) = HiXy /
therefore
-1/2
p(;) - Frx,
Q%) = ©
18y
where Fy = E;_' Now the functions Aij(xz) may be obtained from

equations (Al)

(43)

(Equaticns continued on next page)

'\]l\)!\)k’-’t‘*
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fo1 = %% F 9 )
Aop = %%g FL2x1_5 (43)
Ayg = %25 FL5xl'll/2 F
Ay = 5%5 FLAX1-6 )

Turbulent boundary layer.- In this case

h(X;) = Byx, /7
therefore
-1
P(xy) = g,
A(xy) = 0
where
H
2
e

From equations (Al), the following equations may be obtained:

6

-11/5 N
A1y = 55 Xy

1 2Xl-12/5

Ay = = F
e Gl
_ 528 -21/5
fo1 = 1,875 T > (AL)
38 -2, -22/5
foz = g5 o X /

_ 13 3, ~23/5
boz = 35755 Fr %y
1 Lo -24/5
11,250 Fr Xy

&
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Solid Wedge

Consider a semi-infinite solid wedge havirg a wedge angle ¢ and
with aerodynamic heat transfer on one side only. The restriction of one-
dimensional heat conduction reduces the applicebllity of the present
solution to the front section where the thickness is small.

In this case there is no satisfactory physical reference length.
The variasbles were made nondimensional with re’erence to the diffusion
distance per unit time:

L= V;

Therefore
Xqg = == and 74 =t
a

It may be noticed that, with this particular arrangement where the
unit time is implicit, the choice of the unit “ime determines the units
to be used for t and «. For instance, if tie unit time is one second,
then 7 = t seconds and a must be expressed in (length)e/sec.

If an element of unit width is considered, such as that indicated
in the following sketch:

then

av(Xy) = aXg tan @ dX,

as(Xg) = Vo dXg

a(Xy) = Va %o tan g

I BACIIAVEN ol o
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Therefore the characteristic functions are

h(Xa)
pc\(c—xxa tan @

P(Xa) =

Q%) = Xiq

Laminar boundary layer.- The heat-transfer coefficient is

h(Xa) = H5Xa-l/2

where

Therefore

where

2
Aoz = "1“28_(?;'6) o

35

(A5)

(Equations continued on next page)
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5 .
99 [ WL, -8.¢
P £
25 32 Lan (p) XG‘
L
9( ¥y, -10
AQI# -3—2<tan (p) XG. .

Turbulent boundary layer.- Here the heat -transfer coefficient is

(45)

h(Xa) = Hhxa-l/S

and
L\
% = ()
then
Wip -6/5
Q%) = i
where
H
i
Wm =
T~ oo

From equations (A2) are obtained

_18( VWp ) “3.2 )
A11‘§5‘<t&n¢xa

2

) Xa-h.h

_ 12 W
Ap =352
25\tan o

_1,5%( Yo )x-5-2
A1 625 (tancp @

2
,u78( W 6.4
Aoy = u.(;_'f_) %0

> (26)

625 \tan @

(Equations continued on next page)
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Cy,ou8f dp Y 7.6)
25 T3 5t g) @
) (26)
P W b -8.8
2% ~ 625 \tan @) Xa Y

Conical Shell

Consider the case of a conical shell of constant thickness 1 and
included angle 2y as shown in the following sketch:

Iet the nondimensional variables be

"

a
X, = = and T9 = — t
1 1 A 12

In the annular element of volume shown, for X1 2 XZ*
2 *N ..
a(Xz) = nl [cos v o+ 2(X1 - Xl )s1n Y
av = la(Xz) dx,

ds = 2n1®sin ¥ X, ax,

It may be noticed that for the conical shell the "effective" thickness

x*

%% =11 - % il_) is smaller than the physical thickness, which it
1

approaches asymptotically with x.

are

Now the characteristic equations
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where

Similarly, for X; S Xz*

a(Xy) = x1%sin ¥ tan § X,°

av = msin ¥ tan ¥ X;,° ax,

from which it follows that

1h(Xq) x_z:

P(Xy) = 2 X,
QXy) = f—l

It may be noted that the derivatives of the characteristic functions
have discontinuities at Xz = Xz*; therefore, interference effects are

to be expected between the tip and the shell. Further study of the tip
effect was not underteken; however, this problem is treated in refer-
ence 4. Consequently, only the characteristic equations for X; >> X;*

p(xy) - 21

ky,

are considered, that is:

1
%) = %5

~N NN
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These equations must be used with the understanding that they do not hold
true for regions in the neighborhood of the tip.

Laminar boundary layer.- The heat-transfer coefficient may be written

as
h(X;) = H5Xz-l/2
then
p(xy) = cpx,?
Q(Xl) = %;
where
1H
5
Cr = —=
L=

Equations (A2) may again be used here, and they yield

1 -5/2
A1 = F O 5/2
2, -6/2
Ayp = -l—]é- CL Xl 6/
_ 25 -9/2
A1 = o2 Xy
96 > (A7)
35 -10/2

_ 2
App = _128 CL Xl

-2 o3
Aoz = 155 C17%y

1 4, -12/2
by = zgg L

-11/2

Turbulent boundary layer.- The heat-transfer coefficient may be
expressed as

-1/5
h(Xy) = HeXy /
The corresponding characteristic equations are then

P(Xq) = CTX1-1/5
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= -l—
Q%) X;
where
1H6
Cm = —=2
T iy

Further use of equations (A2) gives

N
.11
= 5 o
2, -12
Ao = %% Cr %y />
121 -21/5
by = 5555 on Y
> (A8)
11 -2
Ao = 5,0(9)0 CT XZ /5
__53 o3y =23/5
Boz = 18,750 CpXy
_ -2k/5
Boy = 11,2;0 CTMX )

Hemispherical Shell

Consider the case of a thin shell of variable thickness having a
hemispherical outer shape, shown in the following sketch:

=T b

~N MM
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In the annular volume element of which the upper cross section is indi-

cated in the sketch

a(XR) = 2n(Rl - %§>sin Xg

av = a(xR)( - %)de
= 2.4
ds = 2nR%sin XR dXg

therefore

a(%r) - tan Xg = g

N et e
~

If the shell has a constant thickness
R %
a

ocl(l -

P(Xg) =

PO e

1 2
R

1
W)ty

If the boundary layer is laminar the heat-transfer coefficient may

be approximately represented by h(XR) = hgp cos Xg for Xp wup to

about 70°. When this heat-transfer distribution is used the character-

istic functions for constant thickness may be written as

P(XR) = S cos XR

1
AR = Ty
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where

1 __ R

kp, 11V
z<1 2R)

hsp

and hgp denotes the heat-transfer coefficient at the stagnation point.
The functions Aij(XR) are obtained by replacing the characteristic
functions and their derivatives in equations (15) which yield

\
All = -5 cos XR

A12 = %— SgsinEXR
A2l = % S cos XR
} (A9)
2(>3 2 2\
A22 =95 (é- cos XR - -5—/
3 a3...2
A25 = - 5 S-sin XR cos XR
1 4 b
AQA = 8 5 sin XR )

Stagnation Point for the Hemisrherical Shell

The stagnation region of a hemispherical shell is of particular
interest since most blunt bodies may be very well represented by a
spherical shape in the neighborhood of the ncse, and this is a critical
area with respect to aerodynamic heet transfer. Furthermore, for axisym-
metrical flow the boundary layer may be expected to be always laminar
in the stagnation area, and the cosinusoidal distribution of heat-transfer
coefficient that was assumed closely represerts the actual conditions.
Consequently, in an effort to obtain a more eccurate solution for the
stagnation point, a fourth temperature comporent term Gh was computed

for this particular case. By following the came general procedure
described in the text, the following results were obtained:

-3
1 -e R

[®]
H
—~
—
j2e}
~—
il

-S7
= "STR2e R

«
N
—~
_i
joe]
~—r
|

R RV ol
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where

Hemicylindrical Shell
In this case the thin shell has a hemicylindrical outer shape and
variable thickness 1. A sketch showing a cross section of the shell
perpendicular to the cylinder axis would be the same as the sketch shown

for the hemispherical shell. The outer radius is used as the reference
length; therefore,

In the volume element indicated in the sketch, having unit depth,

a(%r) = 1(*s)

1



Lo

ds =Rd_XR

The "effective thickness" in this case is, then

ds Z(l 2 )

and the characteristic functions are

If the thickness 1 is constant, these last tvo equations become

If the boundary layer is laminar the heat-trans fer coefficient may be
approximated by

h(XR) = hSL cOs XR

Therefore, the characteristic equations for corstant skin thickness may
be written

P(Xg) = Cy cos Xg
Q(XR) =0
where
1 R2

S S |
G bz(l_.l-l) sI
2R

and hSL is the heat-transfer coefficient at the stagnation line.

~N N+
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Substitution of these

tions (15) yields

Ay

Ap

b3

equations and their derivatives into equa-

- % CY cos XR h
% CY2sin2XR

1

g CY cOsS XR

gﬁ cy?(17 cos?xg - 10)

1
= - —2 CY5s1n2XR cos XR

30
in

1 L
1—8' CY sin XR J

(A10)
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APPENDIX B
ESTIMATION OF THE HEAT-TRANSFER COEFFICIENT

Applications of the present solution to the particular cases of flat
plate, wedge, conical shell, hemispherical shell, and hemicylindrical
shell are presented in appendix A. In these applications only the func-
tional dependence of the heat-transfer coefficient upon the longitudinal
coordinate has been fixed. The input parameters FL, FT’ WL, WT,

Cr,s Cp, S, and Cy were left arbitrary and may be theoretically or

experimentally determined for each particular case. As a matter of
convenience, in this appendix are compiled a few commonly used methods
that may serve as a gulde for the estimation cf the input parameters.

AV O el

Flat Plate With Laminar Boundary Layer

The input parameter is

where Hy 1s defined by

h(xl) = Pry,(St \[Re) ku @E Xz-l/2

F; may be written as

L

Fp, = Proo(St Re)m ;:i \/Taewyl (B1)
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The heat-transfer parameter (St Re)oo may be obtained, for instance,

from reference 6. Figure 21, reproduced from reference 6, shows a plot

of (St Re)oo as a function of Mach number and wall-temperature level.

Flat Plate With Turbulent Boundary Layer

Tn this case the skin-friction coefficient may be obtained by using
a solution of the Blasius type for incompressible flow, in conJjunction
with a T' reference-temperature method. Thus,

.>(a>-1+)/5

cp = O.O59(Reoo)-l/5<%—

where the viscosity has been assumed to be proportional to T®, The
reference temperature T' may be obtained from reference 7 as

: T
g_ -1+ 0.03M° + o.u5<T—W - 1) (B2)

The heat-transfer coefficient is then obtained by means of the modified
Reynolds analogy

St = (Pr)-e/3 ;;

>-0.61+81'l/5x1'l/5 _ H2X1‘1/5

h(Xl> - 0.0295kw(Prm)l/ 3 (Rew/ £t) &/ 5(%-'-

=]

where the value w = 0.76 has been used. In this case the input param-
eter is

Hp

TRy
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therefore

-0.648
Fp = 0.0295 %(Prm)lb(fa )l*/ ( w) (B3)

where T'/Tw 1is a function of Mach number anc¢ wall-temperature ratio
given by equation (B2).
Wedge With Laminar Boundary Layer

The heat-transfer coefficient is the same as that for the flat
plate and, expressed in terms of the wedge variable X, is

1/2 )
h(Xq) = Hl(—v%_) x L/

Hy; was given for the flat plate as

= Pro,(St Ve ) ko Y Re°'/ -

therefore

h(Xe) = Pr(st Re ), koo @ x, Y2 < }15)(0[1/2

1/ ¢ -

a

H

and the input parameter Wy = becomes

™

Wp, = Pro(st\Re), k°° \[—eo;/ﬁ (BL)

~N
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The heat-transfer parameter St\}Re may be obtained from figure 21,

where local flow conditions outside the boundary layer are to be used
for the quantity ( ).

Wedge With Turbulent Boundary Layer

The input parameter is

where H) 1s defined by

b(te) - Mt

and 1s related to the flat-plate value Ho through

. 1/5
el

therefore

0.648
a'l/loxa'l/5 = HuXa'l/5

00

h(Xa) = 0.O295km(Prm>l/3(Rew/ft>h/5(%L>_

and

1 \-0.648
Wp = 0.0295 1];—°—°(Prw)l/ > (Rem/ft)u/ 52! 5<$—> (B5)
b =

where T'/Tm may be computed from equation (B2). For an inclined sur-
face, the local flow conditions just outside the boundary layer are to
be used as the effective free-stream conditions.
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Cone With Laminar Boundary Layer

The input parameter is

where H5 is defined by

H5 may be calculated with the aid of Mangler's transformation from a

flat-plate solution where the free-stream conditicns are replaced by
the inviscid-flow conditions at the surface ol the cone., This gives

Hs = (3 pr(st Re ), oo @

V t cone surface

therefore

C, = \/—B[Pr(St Re)m % \jl?z] (B6)

ccne surface

The heat-transfer parameter (St Re)oo may be obtained from figure 21

by using the values of Mach number and static temperature that the
inviscid flow would have at the surface of the¢ cone.

Cone With Turbulent Boundary Layer

A cone with a turbulent boundary layer heas the same skin-friction
coefficient as an equivalent flat plate havin¢ a Reynolds number equal
to one-half that of the cone (ref. 8). The ecuivalent flat plate is
one having free-stream conditions equal to the inviscid-flow conditions
at the surface of the cone. Therefore, by metns of equation (B3) there
is obtained

e AV o
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Cr = (2)+°0.0205 ] (Prm)l/j(Rem,z)L%(?— (BT)

-0.648
ky, Tm>

cone surface

The value of T'/Too may be obtained from equation (B2) by using the

Mach number and static temperature of the inviscid flow at the surface
of the cone.

Hemispherical Shell

The input parameter for the hemispherical shell was defined in
appendix A as

where hgp 1s the heat-transfer coefficient at the stagnation point,

and may be written as

e - (32 ) (2

where w denotes wall conditions and SP denotes stagnation point.

The heat-transfer parameter (INu ) has been obtained by several inves-
Re
w
tigators. One solution, due to Reshotko and Cohen, is presented in
figure 22 reproduced from reference 9. For free-stream Mach numbers
larger than about 2 a good approximation for the velocity gradient

(%g) is obtained by means of a modified Newtonian flow, namely
SP



/2
(QQ) _Yol2fy B
dx/gp R 7 Pgp

where v denotes speed of sound and 7y 1s taie ratio of specific heats.
By using this velocity gradient, hgp may be expressed in terms of free-

stream conditions as

1/2 1/h L

hep - @jﬁ(v >l/2<u_ Y AR L

VE Vo) VE JRe) \PL Psp 2

2

Therefore T

is

The heat-transfer parameter (Nﬂ.) is givea in figure 22;
w

N

@

the Rayleigh pitot pressure ratio.

Hemicylindrical Shell

In appendix A the heat-transfer-coefficient distribution for the
hemicylindrical shell was assumed to be of the form

h(XR> = hg, cos XR

where Xg is measured in a plane perpendicular to the cylinder axis.

This is a good approximation to the actual distribution for values of
Xgr of less than about 600, for both yawed ard unyawed cylinders.

The heat-transfer coefficient on the stagnation line of a cylinder
at a yaw angle A may be written
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1/2 1/4
(PS—N> <1 ; f?;) / (39)
w\Poo Psy

) may be obtained from the solution
w

()" 1/2f1 k Nu
hgr, = v (Y0, NPx) / (; NG vfg)

Re
of reference 3 by Reshotko and Beckwith. At the stagnation line

The heat-transfer parameter ( Nu

(NU. ) - e"’(Pr)O.ué
W

N

where 9; is the solution mentioned, and is presented in figure 23,
reproduced from reference 3.

In equation (B9) the subscript N indicates that the quantity is

derived from the normal component of the free-stream Mach number
My = M, cos A. Accordingly

1/2

y -1.2
Vo,N = Voo(l + > My )

p
and §§§ is the pitot pressure ratio in a plane perpendicular to the

o]

cylinder axis.

Equation (B9) was obtained by use of a modified Newtonian velocity
gradient at the stagnation line, which applies only for My > 1.5. For

the velocity gradient at My < 1.5 see figure 9 of reference 3.
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Figure 10.- Typical temperature and error distributions for hemispherical
shell of constant thickness with laminar boundary layer. S = 50.
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